R18

Code No: 153AR
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, October - 2020

ELECTROMAGNETIC FIELDS
(Electrical and Electronics Engineering)
Time: 2 hours
Max. Marks: 75

Answer any five questions
All questions carry equal marks

1.a) Solve the electric field at a point on the axis of a uniformly charged infinite sheet.
b) Three point charges 3, 4, 5 coulombs are situated in free space at the three corners of an equilateral triangle with side 5 cm . Calculate the energy density within the triangle. [8+7]
2.a) Derive the expression for Electric Potential at anypoint due to a point charge located at the origin.
b) Point charges of 50 nC each are located at $\mathrm{A}(1,0,0), \mathrm{B}(-1,0,0), \mathrm{C}(0,1,0)$ and $\mathrm{D}(0,-1,0)$ in free space. Determine the total force on the charge at A.
3. Derive the boundary conditions for (i) Dielectric-Dielectric interface (ii) ConductorDielectric interface.
4.a) Obtain the expression for Ohm's Law in point form.
b) Determine force with which the plates of a parallel plate capacitor attract each other?
5.a) Derive the expression for the force between two finite current carrying loops?
b) Evaluate H everywhere for an infinitely long coaxial transmission line of radius ' a ' placed along z-axis whichearries current along a ${ }_{\mathrm{z}}$. Sketch magnitude of H as a function of current.
6.a) Obtain the relaticheetween Magnetic vector potential and Magnetic flux density.
b) If $\mathrm{H}=\mathrm{y} \mathrm{a}_{\mathrm{x}}-\mathrm{x}$ gagni/m on plane $\mathrm{z}=0$, determine the current density.
7.a) Given the fields $V=80 \mathrm{z} \cos \mathrm{x} \cos ^{3} \times 10^{8} \mathrm{t} \mathrm{kV}$ and $\mathrm{A}=26.7 \mathrm{z} \sin \mathrm{x} \sin 3 \times 10^{8} \mathrm{ta}_{\mathrm{x}} \mathrm{mWb} / \mathrm{m}$ in free space, Evaluate E and H .
b) Explain the Faradays laws of electromagnetic induction.
8.a) A uniform plane wave at a frequency of 1 GHz is travelling in a large block of dielectric with $\epsilon_{r}=55, \mu_{\mathrm{r}}=1$ and $\sigma=0.05 \mathrm{~S} / \mathrm{m}$. Determine γ, η, β and λ.
b) Express Maxwell equations in Phasor form.

